Static Laser Scanner

Whilst my cave surveying efforts to date have been mostly focused around grovelling around in small passages trying to use a Disto and/ or Gopro and lights to capture data to create accurate models via photogrammetry my mind was slowly turning on how to survey bigger chambers, laser scanning is the obvious answer.

Cut through of GB’s Main Chamber created from a compilation of scans

In 2016 I used a Geoslam Zebrevo to survey a few local show caves and other sites, this worked very well however the cost and chance of damage to the device in real caving situations is not something I would like to risk. I had heard that some people had attempted to create a DIY version as the SLAM code was apparently available open source, this triggered lots on internet searches on the subject. I wrote off the Cave-a-tron type system as it wouldn’t easily fit into a dry tube to be dived through sumps to survey passages beyond which is something I wanted to be able to do.

Sadly I didn’t find anything I felt I could build within my skills or cost means that could recreate a SLAM type scanner, however I did find some people had successfully built tripod scanners using fairly simple and off the shelf components. What was even better was that second hand laser units they had used were readily available on Ebay at quite a cheap price relative to the cost of a new unit.

The base laser unit itself was a Velodyne VLP16, a small compact unit that I had used professionally on a few occasions, a short time ago these retailed at around £5000 new but are now in the region of £2500. I snapped up two used ones on Ebay for: $400 and $250 (I’ve since damaged the $400 one).

At this stage I should give massive credit to the originators of this idea who’s designs and softwares have allowed me to realise my own version of their scanners. The first is Jason Bula’s:

https://github.com/jason-bula/velodyne_tls

His scanner and Matlab based code is quite rudimentary but paved the way for another person to further refine and inspire my device, Donny Mott’s:

https://github.com/Rotoslider/TLS_Pie

So to reiterate, I have simple re-arranged components they have used into a form factor which suits my needs and have used their software /code to process the data, nothing massively clever on my part. The result is a compact tripod based scanner that is far cheaper than any commercial offering, I can carry all components myself readily into dry passages or through sumps without external help as the scanner fits in a small pelicase or a small dry tube. I had recently signed up to CREG journal and partway through this process saw an article showing how a Cave-a-tron had been converted to be used on a tripod like the device I was building at the time, however the laser is very primitive compared to a Velodyne unit.

Laser and dry tube for diving trips

It took quite a few months of trial and error with various components to get data of an accuracy that I was happy with, this was mainly due to the use of a stepper motor with 50:1 ration planetary gearbox. It didn’t quite rotate at a consistent speed meaning that when overlaying two scans from the same location features were not in the same place as they should have been. I replaced it with a different stepper motor with a 30: 1 harmonic drive and finally was happy with the results. Many other things were tried or swapped in this time before the gearbox was identified as the cause such as power supplies, wiring looms and Arduinos so it wasn’t as straight forward as it sounds.

The main components are:

Velodyne VLP16: Laser scanner mounter vertically on a slowly rotating frame

Raspery Pi 4: Logging of Ethernet data from VLP16 using code written by Donny

Arduino: 3 x push button controls of the stepper motor and logging commands to the Pi4

Stepper motor and Harmonic drive: Provides the smooth slow rotation

Lipo battery: Power for all components

Various other DC-DC converters, switches, wires etc necessary to interface the components.

The scanner is mounted to a tribrach bolted onto a tripod and leveled, either button can be pressed to initiated a scan. The scanner then starts to slowly rotate and the Raspberry Pi4 logs the data to a file, no results are visible in realtime. Once the scan has finished the tripod is moved to the next location, leveled again and another scan initiated. In this manner progress through cave passage can be made, usually 7-10 m at a time between scans but this depends on the nature of the passage. Once back at home the raw scans are turned into point cloud files by Donny’s excellent piece of software and can be aligned together using cloud compare’s manual tools initially then its fine align tools. Below is a video taken by Duncan Price of the scanner in use in Wookey Hole.

Time lapse of use in Wookey Hole, video by D Price

Scans have so far been undertake in:

Badger Hole

Wookey Hole Chamber 20/ passages beyond

Wookey Hole Chamber 22

GB cavern (all of the large main passages and Great Chamber)

Numerous tests in my garden

Interested in how accurate my scanner and methods were I surveyed a close loop around a house, the loop was 76 m in length and contained 9 scanner locations, the misclosure was less than 20cm in XYZ between the same point visible in both the first and last scans.

This I believe to be far more accurate than what can be achieved with a Disto in a cave though it lacks alignment to either magnetic or true north so its accuracy is only in a relative sense. Alignment to a disto based centre survey could be used matching up common reference points in Cloudcompare to align the laser scanner data.

A commercial laser scanner would achieve accuracy far greater than this but the cost would be 15-100x more along with a large sense of paranoia with regard to damaging the unit in the cave environment. The Velodyne laser doesn’t log point colour but is does log intensity so this can be interesting to colour the resulting point clouds by.

The below video shows the data data I collected and aligned from GB cavern, Donny made the fly through after I sent him the data to show him what I had been doing with his ideas and softwares, it starts at the mud run in at the top of the major passage and goes down to the choke just below ladder dig.

At this point I feel I have succeeded in my goals, I have a relatively cheap laser scanner than I can take nearly anywhere (whether I want to is another matter, eg transporting through Daren Entrance crawl..) that produces results accurate to a few centimeters and can scan large chambers or passages with ease, now it is a case of working through suitable sites and producing laser scans of places that otherwise might never be scanned unless someone invested a lot of time or man power or money into carrying in commercially available scanner.

Ravens Well Update

Well its been a little longer than I anticipated updating this page with what I have been working on but rest assured this isn’t due to a lack of activity more a lack of internet at home.

Numerous projects have been going on both on the surface and underground but I thought I would start with some updated data from Ravens Well. For Christmas I treated myself to a small drone (the DJI Mini2) mainly so I could add some surface features to the underground surveys I have been working on though flying it around aimlessly is equally fun !

The learning curve I found to be very easy and by lunch on Christmas day I had produced a model of my house. After a bit more practice and experimentation I was ready to capture the images required to create a surface model of the area above Ravens Well around the three lamps junction of Bristol, ever curious each time I walk/ cycle/ drive over the top as to where the tunnels are exactly beneath this would provide the answer more accurately than just overlaying the underground model/ survey roughly in Google Earth as the Axbridge Caving Group have done.

Ravens well and surface model of the three lamps junction

The flight took about 20 minutes well within the drones ability and Metashape processed the images very efficiently. I used RTK GPS to measure the positions of some prominent features on the ground mainly road marking which were clear and well defined in the point cloud. These were then matched up in CloudCompare resulting in a reasonably accurate surface model of the area. I once again scrambled down to the entrance to the tunnels and to my surprise found that I had fixed RTK status next to the entrance so I marked a temporary point and quickly surveyed from the GPS point to a point marked inside so that the drone data and underground data could be tied to the same reference and overlaid.

Surface point being measured with RTK GPS
Same point in model with tunnels visible underneath

Overall a successful addition to projects, easy to do and gives a better understanding of the relationship between above and underground features.

Three lamps Junction area with tunnel underneath (long shadows from surface features caused by low winter sun)

More Porth….

The image above shows progress so far, colour coded by area

Over the summer months this year (2021) I continued to visit, survey and video various parts of the cave upstream of Upper Cave Water Chamber. The results are very pleasing because not only is the level of detail being captured far in excess of any survey that has been conducted before (at this site) but this detailed data (the models produced by photogrammetry) is also matching well with the Distox2 data which gives real world scale and orientation meaning its not just pretty pictures which I prefer to avoid.

This area of the cave lends itself very well to my process as each section is short and clearly divided by short sumps giving nice workable areas to focus on. The below image shows a comparison with the UBSS survey in plan view.

Historical comparison (UBSS on left)
Plan view, blue line where visible is the DistoX2 centreline data
Side view, blue line where visible is the DistoX2 centreline data
UCWC looking downstream from Sump 8 (textured model)
Cobley crawl looking downstream into Sump 8 (textured model)
High level muddy tube (textured model)
Sump 9 looking upstream (textured model)

Where to go next ? I would like to improve the alignment of Sump 9 relative to the rest of the model as so far this has just been best fitted to the other data and I would prefer to link it directly. After this then adding the passages in Parker Series is the next logical step but perhaps this will have to wait until next summer.

I have uploaded the models of the three dry sections to Sketchfab, its low resolution due to the limits on the free account.

Upstream Porth Yr Ogof by cave-dive-make on Sketchfab

The Vice

Rescue box 1 just past The Vice

So far my attempts at underground photogrammetry have been limited to easy places where walking steadily through a passage poses little to no issue, this where caves are involved is somewhat limiting due to the nature of cave passage formation.

I set myself the challenge of attempting to model something smaller and less easily walkable than what I have done so far to see how collecting the video might be and how well the software would cope with what will likely be non ideal footage for reconstruction.

The entrance passage to Daren Cilau struck me as a good place to try, more particularly the section known as the Vice; A narrow section in which cavers must turn onto one side and keep their bodies high to prevent being jammed into the narrow trench in the floor. It doesn’t pose a particular difficulty to myself in terms of the passage vs my body size and fairly large people can get themselves through but I thought it would make an interesting experiment, the main issue being capturing reasonable video with one hand whilst negotiating the section of cave. It is an iconic cave in British Caving and probably has never been measured before in such detail.

With the above goals in mind I set off one day over to Wales, my plan was to cave the short distance into to The Vice, mark some (min of 4) stations on some prominent features before, through and after The Vice, survey these stations with a distoX2, then cave through this small section a few times whilst trying to take steady video. Using the marked stations the resultant model could then be scaled and aligned correctly. These stations were marked with Tippex which was carefully removed after use.

Source video of one of the outwards trips

A single dive torch was used attached to my Gopro on a cheap ebay selfie stick to keep weight and bulk down.

In practice this went fairly smoothly, the Vice was passed a number of times:
In: Marking stations
Out: Survey with Distox2
In and out: filming
In and out: filming again
In and out: removing Tippex stations

On arriving home I set about processing the images and compiling the survey data. It has become my normal practice to film both directions into and out of a passage, if the alignment is to be considered accurate then both in and out passes should match up (plus any additional passes). This is closing the loop which allows relative accuracy to be assessed and also gives a different perspective on features if its successful.

Separate models for each in and out pass were created first, unfortunately each one giving a slightly different representation of the passage when attempts at aligning them in Cloud Compare were made. I then made a model combining both a single in and out set of images, this was successful in that there only appeared to be a single cave passage which showed that the software was able to combine both sets of images semi correctly. However when this point cloud was matched with the survey data although a low RMS (0.05 m)value was reported the survey data appeared to shoot through the walls of the cave which I know not to be true. I then made a new attempt using all in and all out passes and matched the reference points with the survey data again, this time I got a low RMS (0.03 m) value and the survey data appeared as it should within the bounds of the walls, a good result which I am happy with. This goes to show the importance of some quality control and verification against other sources of data. The images below detail these results.

Single inward pass fitted to survey data

The above image shows the model created from a single inward set of images, Metashape reported all images were aligned and after 7 parameter transformation to the survey points in Cloud Compare a low RMS value of around 0.05 m was reported, however on inspection the survey data (blue line) goes through the walls so something isn’t right. The deviation occurs through the narrowest section where steady filming was most difficult. The image below is the result of the 7 param. transformation.

7 parameter shift results for the single inward model

The below images show the same process as above but using the model derived from a combination of all 4 in and out passes.

All in and out passes fitted to survey data (the roof cut off to allow the data to be seen)

The results for the 7 parameter shift can be seen below:

7 parameter shift results

I am very happy with the results of this, not only has a model of the cave been constructed but it also appears accurate when aligned to distox2 data. The model plus a few extras to aid with scale have been uploaded to Sketchfab here:

‘The Vice’ Ogof Daren Cilau by cave-dive-make on Sketchfab

What I would like to do is attempt to model the entire entrance crawl in this manner…. it might take a while but watch this space !

Early Adventures in Cave Surveying: 2

The launch of the 5th edition of Mendip Underground caused somewhat of a surge of interest in certain caves in which it contained updated descriptions, photos and rigging diagrams, Mangle Hole near Sandford being one of them. It was the rigging topo which caught my attention as it suggests some nice free hanging pitches with multiple rebelays and a sump at the bottom, what more could you ask for !

The Entrance to Mangle Hole

http://www.mcra.org.uk/registry/sitedetails.php?id=851

The reality is somewhat different, its reputation does seem to precede it and it is seldom visited but I quite enjoy a trip there and have undertaken a few club trips, several digging trips, several surveying trips plus a failed dive trip.

As there was no decent published survey of the cave (and there still isn’t) I decided with my new found cave survey skills I would have a go myself. I was joined by Pete Hall and we set about surveying the cave, I don’t remember much detail of the trip itself but I can remember feeling quite frustrated when sitting down at my computer with the data afterwards knowing what shape the passages and chambers actually were and seeing the shapes that I was to draw on the survey to represent them.

The problems lies in that the cave is very steep in nature, the entrance rift is very narrow floor to ceiling but wide in the wall to wall dimension, the chambers are large and vertical in nature with lots of alcoves and side rifts, the route to Aldermaston Chamber is small, complex and muddy. When the splay shots are viewed in plan view the whole cave looks very different to the reality.

Attempt at Plan view in CAD, Splays in yellow, survey legs in red.

At the time I was trying to learn how to draft surveys in Therion but perhaps this multilevel cave was a bit to challenging for my basic skills. Instead I found a handy export function of PocketTopo where the raw data is exported as a 3d *.dxf file, this can then be loaded in CloudCompare where it approximates the walls based on splay shots and shows a 3d model which can be spun around and viewed and understood more readily then a plan and elevation view.

One of the exquisite mud formations, this one looks like a mans head

Early Adventures in Cave Surveying: 1

The Cheddar Caving Club was responsible for creating the link between Bath Swallet and Rod’s Pot (after work by other clubs) creating an entertaining through trip on Burrington Combe, in the Mendip Hills, Somerset. The next logical step was to attempt to link Rod’s Pot with its neighbour the opposite side; Drunkard’s Hole.

http://www.mcra.org.uk/registry/sitedetails.php?id=45

http://www.mcra.org.uk/registry/sitedetails.php?id=5

http://www.mcra.org.uk/registry/sitedetails.php?id=10

I was involved in the dig for a while in Rod’s Pot starting at the bottom of what was known as the ‘Blind Pots’. This progressed horizontally for a short while before a route was excavated vertically upwards to enter a small chamber. From here further digging occurred in the upwards direction.

Pete Hall near the entrance of Rod’s Pot

At a similar time myself and my regular caving partner began re-examining a few areas of interest in Drunkard’s Hole, a short section of passage was found after climbing up an ever tightening aven and a dig was started here feeling that we were heading right for our dig in Rod’s Pot.

Whilst we thought we were heading in the right direction it is hard to know for sure. I purchased a Disto x310 and the conversion kit which allows accurate and fast cave surveying to be performed. The goal was to establish the distance between the two digs in the cave to motivate us to further our efforts (after all we had dug an estimated 120 m of passage in Rod’s Pot and the gap between the two caves was thought to be about 80 m in a straight line).

Arriving early before each digging session I set myself the task of surveying between both entrances on the surface so that the data collected in both caves could be accurately linked. Lengths of PVC pipe stuck into the ground were used to clear the vegetation acting temporary survey stations.

The process was completed three times to check the accuracy of the work; misclosure between the traverses was within 0.2 m in the horizontal plane and within 0.3 m in the vertical plane.

Pete Hall near the start of the dig

Now the task of surveying from both cave entrances to the dig faces was all that was required, this took a few trips in both caves to achieve and was a good excuse to escape the physical work of digging, bagging, dragging and stacking of mud in its various forms.

A no frills approach to the survey was taken meaning that only centre line data was recorded to speed up the process in what are difficult size and shaped passages to accurately survey.

The results were suprising, both ends of both digs in Rod’s Pot and Drunkards Hole were still separated by over 50 m horizontally despite over 120 m of passage having been dug from solid mud fill.

Profile view of the two caves and digs
Plan view of the two caves and digs

Not long after the surveying was completed we retired to the Crown Inn at Churchill for the final time and focused efforts elsewhere thwarted by the complex geology of the Mendip Hills.